A majcr purpose ot the |echni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports *o business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

LA-UR -89-2242

Los Alamos Nauonal Laboratory 18 Operaled by tne University of Califorria for the United States Department of Energy under contract W-7405-ENG-16

LA-UR--89-2242
DE89 015240

TITLE SNM ACCOUNTING SYSTEMS - DBASE VERSUS C

AUTHOR(S) R, C, Bearse and R. M. Tiainger

SUBMITTED TO 30TH Annual Meeting of the Institute of Nuclear
Materials Management, Orlando, July 9-12, 1989

DISCLAIMER

This repurt was prepared s un account of work sponsored by an ugency uof the United States
Government Neither the Lnited States Gaverniment nor uny agency therwof, nor any of their
employees, makes uny warranty, express or implied, or ussumens uny legal liability or respinsi-
hility fur the uccuracy, completeness, or usefulness of any information, appstatus, product, or
provess dischomed. or represents that s use would not infringe privately owned nghts. Refer-
ctice herewn to any specific comimeraial product, process, o service by trade name, trademark,
manufacturer, or otherwise does not necessanly constitute of unply its endursement, recom-
mendation, or tavaring hy the Unmited States CGiovernment or wny agency thereol The views
sl opiniomy of authors expressed herein do not necessarily state or reflect thase of the
Ulnited States Gaveenment ot any agency thereol

Ry arcopiance al this article the publihar tecognizes 1N 1he U § Governmeni relainy a noneaciusive royaily.free icense to pubhish or 18pr0duce
the putiisred form ot tniy cantbubion or 1o Wiow others 1o do 80 tor US Government purposes

|
Tre Lue & o8 NaUonal | ghorgior 1equetty 1hat Ihe publisher identily this AThcI® ax work parformad under the suspices of tha U § Daparimant o tnergy

STER
- ' borat
LOS AISNNOS Leshlames NationalLaboratory

-

VTN . .« PRI I e O R SN I T N NI NIV 1L o 4

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

SNM ACCOUNTING SYSTEMS - dBASE VERSUS Cw

R. C. Bearse,** 2. M. Tisinger, and J. S. Ballmann
Safeguards System Group
Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT

The Fuel Manufacturing Facility (FMF) at Ar-
gonne Natinnal Laboratories-West (ANL-W) in Idaho
Falls accomplishes its internal special nuclear
material zccounting with a PC-based DYnamic Mate-
rial ACcounting /PC/DYMAC) system developed as a
collaboration between FMF and Los Alamos National
Laboratory staff members. This system comprises
four computers communicating via floppy disks
containing transfer information. The accounting
software was written in dBASE' and compiled under
Clipper. The decigion was made to network the
computers and to speed the accounting process.
Moreover, it was decided to extend the collabora-
tion to Sandia National Laboratory staff and to
incorporate their recently developed CAMUS and
WATCH systems to automate data input and to pro-
vide a measure of material contzol. The current
version of the c¢nde is being translated into the
C language. The implications of such a change
will be discussed.

INTRODUCT ION

The Fuel Manufacturing Facility (MMF) at Ar-
gonne National Laboratorizs-West (ANL-W) in I[daho
Falls accomplishes {ts internal special nuclear
material (SNM) accounting with a PC-based DLYnamic
Material ACcounting (PC/DYMAC) system developed
¢s a collaboration between FMF and Los Alamos
National Laboratory staff members.! This system
comprises four computery communiceting via floppy
disks containing trunﬁ{er informatior. The com-
puters are [BM/PC-ATs,3 each with 2 MB of memory

;?Biiﬂwori'ii'iﬁpported by the U.S. Department of
Energy, Office of Safeguards and Security.

*#Collaborator from the University of Kansas.
fTrademnrk of Ashton-Tate, Torrance, CA 90502,

**Trnd'nnrk of Nantucket, Inc., Culver Clty, CA
%0230,

§Reuiltered trademark of the International Busl-
ness Machines Corporation.

and a 40-MB hard disk. The PC/DOS* operating
system runs the accounting software, which is a
Clipper-compiled version of the dBASE code.

The original system design was dictated by
circumstances. The facility was then spread over
several buildings +hat could not be linked vy
wire. Transactions were posted by carrying the
information from one computer to another via
floppy disks. Subsequently ANL-W moved the FMF
and all its operations into a single building and
has at least doubled its throughput. Because all
operations are now in a single building, the need
for trarsferring data via floppy disks is obvi-
ated. The increase in throughput has exceeded
the ability of the dBase code to perform quickly
enough to keep up. Careful time scheduling is
necessary to synchronize production and account-
ing. Thus, a new system was called for.

The decision was made to network the compu-
ters and to speed the accounting programs. More-
over, it was decided to extend the collaboration
to Sandia National Laboratory staff and to incor-
porate their recently developed CAMUS and WATCH
syutemcz for automatic data input and a r.asure
of material control. (CAMUS allowad barcode data
entry of information for transactions, and the
WATCH system sends an RF alarm if an unat: unded
item is disturbed without permission.)

SOFTWARE AND HARDWARE

We believed that the XENIX** operating system
(a variant of UNIXV) would facilitate the inter-
computer communication and allow the simultaneous
operation of several processes. We originally
sought a XENIX-based version of dBASE and, nft;;
some research, determined that SCO FoxBASE+
would fit our needs. Use of this system minimized

#Trademark of Microsoft Corporatior.

*alrademark of Santa Cruz Operations, Inc. (5€0),
Santa Cruz, CA 95061-9969.

argis(pred trademark of Bell Laboratories.

1'*l‘lm Xenix version {s avallable through S€0,

changes to the original PC/DYMAC code and provided
a small speed improvement over ithe original. More-
over, in principle, the accounting system could
be run as one process among many. The original
system included a communications package, a trans-
action poster, a transaction builder, and a CAMUS
interface, which ran as concurrent, separate proc-
esses.

An [BM PS/2 Model 80 running an 80386 proces-
sor at 20 MHz was procured to replace the central
computer. The FoxBASE+ system worked effectively
cn that computer and improved the speed two- to
three-fold over the Clipper-based system currently
in use. Running on the IBM ATs, however, speed
wag not enhanced overall, and the process swapping
necessary in the new design caused disconcerting
data entry delays that threatened the usefulness
of the final product. Most importantly, it was
clear that there would be no reserve capacityv to
accomnodate increased manufacturing productivity.

We decided to rewrite the code in the C lan-
guage* using the FairCom** software package c-tree
as the file handler. Time constraints did not
allow a detailed study of available file handlers.
One of us had contact with University of Kansas
programmers' who had had success with c-tree for
their application. Their experience clearly indi-
cated that the FalirCom product was efficient, re-
liable, and suited to our task.

EXPERIENCE GAINED
File Handler

The c-tree product and its companion report
generator r-tree have worked flawlessly. c-tree
can work in each of three modes: as a stand-alone
file handler, as a multi-user file handler, and
as a file server. We chose the first approach
because the manual suggegted that the necessacy
overhead for multi-user and file-server modes
would significantiy slow the design of the system.
Our design is such that access to the inventory
file is through the same singly-threaded modules,
80 the simpler access procedure i{s acceptable.

The c-tree and t-tree codes are warranted to
be portable. They are delivered as C-language
aource code. Installation instructions a in-
cluded for UNIX, XENIX, PC/MS-DOS and VMS. For
the XENIX system, a distinction {s made for in-
stallation on 286 and JB6 versions.

We have found the r-tree package to be abso-
lutely bug-free; it is more than tast enough for

*We used the SCO C-language compiler.
*tFairCom, Colwnbia, MO 65203,

*Dnln supplied by David Mannering, University ot
Katinas,

f*Trudemnlk of Digltal Fquipment Corporation,
Maynard, MA O1754-99013,

our purpose; it has capacity (such as multi-user
and variable length record capabilities) that we
have not begun to explore.

The report writer is easy to use once it is
understood. A compiled driver is part of the main
code and calls report scripts that are maintained
as ASCII text files. The driver interprets these
files and generates the report. Thus, it is pos-
sible to change reports or design new ones without
having to recompile. The only drawback so far is
the lack of a way to program the script file to
ask the user to enter data. Presently, we are
forced to modify the report driver to accomplish
this. This may simply be caused Ly an incomplete
understanding of the r-tree package.

A d-tree package completes the set. It ap-
pears to be a development package that allows the
user to "easily" produce database-type applica-
tiona. The effort required to wunderstand the
other packages has not encouraged us to explore
d-tree further at this time.

C-CODE VERSUS dBASE

The C language has much to recommend it. [t
is a far older language than many care to recog-
nize (its direct predecessisrs are older than
FORTRAN). The adoption of . dues not require
FORTRAN programmers to relcarn complately solu-
tions to programming protlems as would LISP or
even INGRES.* C is basically a l!linear, block-
structured, function-based language like FORTRAN
77 and Pascal.

When the recoding was begun, we had little
experience with XENIX and essentially none with
C. Even with that limited background, translation
of the basi. system took less than 300 person-
hours. The program at that point consisted of
about 130 routines, each varying in size from 10
linesa of code to geveral hundred; uot counting
declarations in "{nclude" files, ther. were more
than 4000 lines.

The second phcise of the coding consisted of
tinlshing all the necessary transaction modules,
various utilities, and generators for the 2} re-
ports used at FMF on a regular basis. Because we
had learned much by then concerning the C language
and XENIX, we saw that a siiniflcant restructuring
of the entire system would nhe necessary. In par-
ticular, we improved the screen handlers and data
entry subroutines, and incorporated a mouse inter-
tace into the system. Finally, we developed,
tested, and added the communication packages to
the syatem. The code now cousists ot more than
200 wubruvutines and 12 report scripts and {4 now
roughly 10 000 lines long. OQur total investment
ia nearly 1000 parson-hours.

e exparience to date has {liumined soveral
dittrinaces between dBASE and U language codey
*lrademar k of Relatonal Technology, Tne.,
Rerknlny, CA 94709,

that are worth discussing here. Moreover, our
choice of C was based on widely held assumptions
about the C language, some of which now seem jus-
tified, others of which need more study.

Speed

At the ctart of debugging, we compared the
speeds of the system now operating at ANL-W and
the recoded ore. A set of 100 transactions, each
requiring a rewrite of the inventory file, takes
about 500 seconds on the old system, but only 20
seconds on the new system. This 25-fold speed
enhancement is ever more impressive when it is
remembered that the old code is compiled under
Clipper, which is invariably faster than inter-
preted dBASE code.

Portability

One of the highly touted advantages of C is
its portability, It is supposed to be easy to
move code from one computer to another. Compilers
are avallable on a wide variety of machines, and
the highly portable UNIX operating system is
largely coded in C. We are not yet able to tes-
tify to the portability, although we hope to pcrt
it to WMS soon.

We did tind, however, what the experts al-
ready knew--that portability is not automatic.
We were ghocked to discover that the first version
of our code, which ran well on an 80286 processor,
would not run on an 80386. We finally determined
that the problem was, as usual, ours. Integers
on the two machincs had different byte lengths,
and ve were not carefully controlling our declara-
tions to ensure compatability. By reviging the
code and cavefully adopting standards that we
believe are now machine independent, we sgeem to
have solved this problem. We are not, however,
ready to move the code to a completely different
architecture such as VMS.

Record and Field Sizes

In dBASE, aumbers are stored as ASCII
strings. Thus, a 10-digit integer is stored in
10 bytes as is a 9-digit floating point numbae:-.
In C, integers can be stored as 2 or 4 bytes and
floating numbers as 4 or 8 bytes. Four-byte real
numbers will accurately hold values of seven sig-
nificant flgures. We have chosen to use 4 bytes
tor storing floating point assay results, but use
H bytes when performing calculatiuna.

Thur, we can compress the size of an inver-
tory recuord from 96 hytes (n the dBASE version
to oaly 160 bytes in the ¢ veraion. This not unly
saves space bu’ atfords some speed improvement.

Indexed Varlablen

dBASE. does not naturally allow the use ot
indexed variables. ¢ provides two aequivalent
methods ot accessing arvrays, Oue can use the form
varlj), which represents the jth element of the
AT"\Y var (4 starts at 2ern) or the pointer method
"(oared). In JBASE it {m possible to achieve the

equivalent of indexed variables by creating vari-
able names from the index itself, but this tech-
nique is not natural and is difficult to follow.
Compilers, such as Clipper, obviate this problem
by providing subscripting as an extension to the
dBASE language.

Structures

The C language allows structures. Users of
Pascal will recognize immediately the concept and
the syntax. A structure is defined by declaring
the elements (fields) that compose it. An element
within a structure can then be referred %o as
"'struct.element,” or in pointer notation, as
“struct-r>element.” Structures may be nested. We
have taken advantage of this by defining a atruc-
ture "amt," which represente each chemrical and
isotopic assay of an item. We use this structure
in two larger gtructures: the inventory and the
transaction. An inventory record in our system
congists of demographic information (such as where
the object is and how it relates to others) and
quantitative information Iincluding 1its chemical
analysis. The analysis is in the substructure
"inventory.amt." To reference the uranium amount,
one need only write "invent.amt.uran."” Similarly,
the transaction is made up of three parts--an xn
part representing the change, and two inventory
amounts: the source and degtination inventory
records. The fact that the amt subatructures in
each of thege gubstructures are the gsame provides
some powerful advantages as will be shown below.
Structure and substructure addresseg and values
can be passed at will between subroutines and
other program parts providing a significant econ-
omy of code and hence improving program lucidity.

Subprograms

Although dBASE only tolerates subprograms, C
encourages them. With structures and pointers,
it is possible to write very powerful modules to
manipulato data entitles and to call them suc-
cinctly from the calling program. This succinct-
ness makes the code easler to understand. Care
in the design of these functions and coplous in-
ternal error checking can be a powerful aid t>
rapid, accurate development of code.

Close Relationship with the Operating System

The C language was used in developing the
XENIX operating system: thus, (ts use permits
Interactions with the operating system that would
not be natural or [aat wlth other languages.
dBASE is particularly awkward in {ta lnteractions
with the operating system.

Because much of the XENIX operating system
la itself written It €, {t presents a well-detined
and predictable intertace to € code. We have
found that opening and closing ot tiles {4 at
leaut ten ULimes tamter than with JdBASE. We have
nyt bothered to {mplement indexed tiles that main -

tain allowad values tor tlelds, such as product
dexcriptions and locations, bhecause there 4 no
pereceptible delay 1n system operation without
them,

Generic Modules /* STRUCTURE FOR AMOUNT TYPE RECGRDS */
/* INCLUDE FILE RGSTRC.H */
The Holy Grail of SNM-accounting-system

writers has been the generic accounting system. typedef float FLOAT;
We have been involved with the development of at typedef char CHAR;
least Lhree systems hoped to be generic, and each typedef unsigned short USHORT;
fell far short of the goal. C may provide, how- typedef long LONG;
ever, a way to develop a significant number of
modules that would be generic and portable. A struct amountform {
system specific to a particular plant could be FLOAT netamt;
built more cheaply using some of these modules FLOAT alloy;
rather than starting from scratch. We will dis- FLOAT uran:
cuss one such module in detail. The example we FLOAT u 234;
have chosen also points out some of the other FLOAT u 235;
features of C that have been indicated above. FLOAT u 236;
FLOAT u 238;
Figures 1-3 show fragments of C code. The FLOAT pu;
firgt file is part of an "include" file that con- FLOAT pu iso;
taing the declaration of an '"amountform" (''amt’) FLOAT pu 239;
structure, which contains the assay amount. lig- FLOAT pu 240;
ure 2 shows the first code that was written to FI.OAT pu 241;
add one amount record to another. The very basis FLOAT pu 242;
of an accounting system is crediting and debiting. FLOAT du;
Adding one "amt' record to another is clearly FLOAT du 235;
generic. This is the routine that credits an FLOAT zr:
inventory record with a transferred amount. It FLOAT ta:
ig quite clear to the average programmer, be he FLOAT si;
or she FORTRAN or Pascal adept. Although the FLOAT mo:
crediting process is generic, the fields chosen FLOAT ru;
here are not, and thus it would be necessary to FLOAT rh;
rewrite the code shown in Fig. 2 each time dif- FLOAT pd;
ferent elements are chosen. FLOAT other;
b
Contrast thisg wits Fig. 3. Here the amount /*STRUCTURE FOR INVENTORY TYPE RECORDS */
substructure consists of a contiguous sequential struct inventform (
seriegs of 4-byte segments, each segment represent- CHAR type;
ing a floating point number. To change the mean- LONG sertal no;
ing of these fields, it 1is only necessary t»o LONG col no;
change the declarations in the 'include" file. LONG supcol no;
The "slzeof' operator automatically determines the USHORT col count;
size of the amount substructure and allows the USHORT batch seq;
code to cut off the scan of the 4-byte segments USHORT slug no;
at the appropriate place. This code can be made USHORT position;
independent of the choice of 4- or 8-byte numbers USHORT yaar;
80 long as all the elements of "amt" are of the CKAR batch no(RGSZbatch nol;
same: type, contiguous, and sequential. CHAR Jjacket no{RGS2jacket nol;
CHAR prod desc[RGS2prod desc];
Virtues of dBASE CHAR spm no[RGSZspm no);
CHAR tran no[RGSZtran no]l;
dBASE has some obvious advantages over (. (HAR status:
[t can be used interactively--a powerful advantage CHAR xn tag(RGSZxn tagl;
when debugging ot attempting to develop a strategy CHAR room{RGSZroom]:
to accomplish a computing task. Files can be CHAR zone(RGSZzonel;
manipulated ad hoc, aiding in revising field mean- CHAR container{RGSZcontaliner]):
ings and correcting errors. dBASE is certainly CHAR romarks(RGSZremarks):
more user friendly and easier to learn. CHAR mescod,;
CHAR collection(RGSZcollection];
CONCLUSIONS FLOAT length;
FLOAT avg diam;
The C language has some serious drawbacks. FLOAT min diam:
[ts compilers are very tolerant, making it pos- FLOAT max diam;
sible t) legally write code that manipulates other FLOAT daensity;
vode far away {n space and time trom itselt, We s
often found bugs arfsing trom the addition of a
new pilece of code that were not due to the new Fig. L.
code but to a third plece of code that was writing Part of the include file that declares
into an unintended location., The new code simply the luventory structure.

provided a place tor the old code to make its
malignant effect manifest.

include "rgstrc.h"

VOID increment(origp, changep)
struct amountform *origp;
struct amountform *changep;

{
origp->netamt += changep->netamt;
origp->alloy +a changep->alloy;
origp-»uran +a= changep->uran;
origp->u 234 +« changep->u 234;
origp->u 235 += changep->u 235;
origp->u 236 += changep->u 236;
origp->u 238 +« changep->u 238;
origp->du += changep->du;
origp->du 235 += changep->du 235;
origp->pu += changep->pu;
origp->pu 239 «= Changep->pu 239;
origp->pu 240 += changep->puy 240;
origp->pu 241 «+= changep->pu 241;
origp->pu 242 +« changep->pu 242;
origp->pu 150 += changep->pu is0;
origp->mo += Changep->mo;
origp->pd += changep->pd;
origp-»>rh += changep->rh;
origp->ru += changep->ru;
origp~»>si += changep->si;
origp->ta += changep->ta;
origp-»2r += changep-»>zr;
origp->other += changep->other;

}

Fig. 2.

The original program to iucrement the fields
kept at ANL-W. The routine is passed two
pointers—a pointer to an inventory record and
a4 pointer to a transaction record. The in-
ventory flelds that are the part holding the
amounts are lpcremented by the amount in the
corresponding fields in the xn part of the
transaction record. The += gyutax means "add
the right hand side to the left hand side and
store the result in the left hand side."

These potential problems can be kept under
control by careful use of debugging devices when
developing modules. A major aid is the "lint"
program supplied with al! C compilers. A program
that compiles may generate warnings when it passes
through lint. We have usually found that what
appear to be innocuous warnings from lint are
ignored at peril.

Even lint will not always catch errant
pointers. C's polnter capabllity will uallow you
to write to areas of code or data that you should
not. Unfortunately, there is no convenient way
to eschew the use of pointers. We have found
that a debugging tool developed by White is a
powerful method for ratehing such errant pointers.
A side benefit s that, when in operation, it pro-
vides a convenient tracing method. This debugger
ls incorporated in a routine that dynamically
allocates space. We maintain two space allocation
routines: one that includes the debugger and one
that does not. We need only relink (a matte:r of
less than a minute on the PS/2 Model BO) to go
from vne to the other. The debugger does slow
the aystem down noticeably, but not so much that
it will inhibit alpha or beta testing.

nclyde ‘~qstre 2”

4010 incromentiorigp, :nangen)

ftruct amountfore *arigp: /* ptr o arvgiral recors */

Struct amountfors °*changep. +* prr to 1 crament recoryd */

{
INT max; {® number of floating point numders 1n strucsyre *
INT K 1* '30p ingexr */
FLOAT * origf: /® ptr to a floating point flelg */

FLCAT * changef: /° ptr 2o the fleld cf tne increment °/

/® qet the pointer for the first floating variables “/
origf = (FLQAT *)origp;
changef « (FLOAT *ichanqep;

/* determine the number of floating point numbers in struczyre */
Max = sizeof(struct amountform) / Si1zeof (FLOAT);

/* nengle each one In turn °/
for (R « 0; K ¢ maK; Kee))

/* increment the original number oy the amcun* of ~hange */
*(0r1gfes) en "(changefes),

Fig. 1.
A geuneric program to iancrement floating point
fields iu a structure of flcating fields.
This code serves exactly the same purpose as
the code im Fig. 2, Here, however the power
(and complexity) of the pointer make the mod-
ule generic. It will work with any list of
items in the setructure amt, so loug as each
is of type FLOAT. Moreover, FLOAT could be
redefined as DOUBLE, LONG, cr INT without
ckhanging the code in the subroutine. The oaly
reGuirements are to change the definitions of
FLOAT and the structure amountform and to re-
compile the subroutine lncrement. The (FLOAT
%) notation casts the term to its immediate
right ioto the variable type pointer-to-a-
float. The notation ++ after the variable
seans “add cne to the variable after the orig-
ical value bus been uscd.”

Proper attention to the portability-enhancing
features of C may indeed allow portable programs,
but we have much to learn before we see why it
would be superior to a carefully designed FORTRAN
program. The vse of pointers may make standard
generic packages possible that could ease the tasgk
of building an accounting package.

The C language is well worth considering for
bullding an accounting system, particularly a new
one. If the program is properly designed, the
ptogrammers need not fear hardware upgrades. A
brief examination of computer journals indicates
a bewlldering variety of C support products for
every purpose and operating system.

The C language is not difficult to learn.
FORTRAN or Pascal programmers, particularly the
latter, will find the transition easy. The major
learning barrier is the concept of indirect ad-
dressing (pointers), particularly because Argument
passing requires their uss. Good books?-" and
support groups are a must, and we have included
some suggestions.

[t has taken us 6 muonths to get tu where we
are nuw, and we have still much to learn about the
potentials and problems of C. Plan for a learning
curve [f you assign FORTRAN or Pascal programmers
to such a task. A jeasvned C prugrammer as part
of 4 team would prevent many (alse starts.

REFERENCES

1.

i~

R. C. Bearse, R. J. Thomas, S. P. Henslee,
B. G. Jackson, D. B. Tracy, and D. M. Pace,
"A Materials Accounting System for an IBM PC,"
Nucl. Mater. Manage. XV, 373-378 (1986).

S. Anthony Roybal, Stephen Ortiz, and S. Paul
Henslee, "Demonstration Personnel and Material
Tracking System at ANL-W,"” Nucl. Mater.
Manage. XVII, 789-793 (1988).
The C Users Journal 7(1) (1989). (The entire
issue is devoted to portability.)

Eric wh:te, '"Controlling the Malloc Heap,'" The
C Users Journal 7(2), 45 (1389).

B. W. Kernighan and D, M. Ritchie, The { Pro-
grammer Language (Prentice Hall, Englewood
Cliffs, New Jersey, 1988).

A. Koenig, C Traps and Pitfalls (Addison-
Wesley Publishing Company, Reading, Massa-
chugetts, 1988).

H. Schildt, C: The Complete Reference
(Osborne McGraw Hill, Berkeley, California,
1988).

R. Ward, "Debugging C," Que Corporation,
Carvel, Indiana (1988).

The C Users Journal, 2120 W 25th St., Law-
rence, KS 66046.

